Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Thromb Haemost ; 18(12): 3296-3308, 2020 12.
Article in English | MEDLINE | ID: covidwho-1066732

ABSTRACT

BACKGROUND: It is long established that von Willebrand factor (VWF) is central to hemostasis and thrombosis. Endothelial VWF is stored in cell-specific secretory granules, Weibel-Palade bodies (WPBs), organelles generated in a wide range of lengths (0.5-5.0 µm). WPB size responds to physiological cues and pharmacological treatment, and VWF secretion from shortened WPBs dramatically reduces platelet and plasma VWF adhesion to an endothelial surface. OBJECTIVE: We hypothesized that WPB-shortening represented a novel target for antithrombotic therapy. Our objective was to determine whether compounds exhibiting this activity do exist. METHODS: Using a microscopy approach coupled to automated image analysis, we measured the size of WPB bodies in primary human endothelial cells treated with licensed compounds for 24 hours. RESULTS AND CONCLUSIONS: A novel approach to identification of antithrombotic compounds generated a significant number of candidates with the ability to shorten WPBs. In vitro assays of two selected compounds confirm that they inhibit the pro-hemostatic activity of secreted VWF. This set of compounds acting at a very early stage of the hemostatic process could well prove to be a useful adjunct to current antithrombotic therapeutics. Further, in the current SARS-CoV-2 pandemic, with a considerable fraction of critically ill COVID-19 patients affected by hypercoagulability, these WPB size-reducing drugs might also provide welcome therapeutic leads for frontline clinicians and researchers.


Subject(s)
Fibrinolytic Agents/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Organelle Size/drug effects , Weibel-Palade Bodies/drug effects , Cells, Cultured , Drug Evaluation, Preclinical , Drug Repositioning , Hemostasis/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Weibel-Palade Bodies/metabolism , Weibel-Palade Bodies/pathology , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL